LIMITATIONS OF HUMANS
WHEN USING MALICIOUS TERMINALS

ISTVAN ZSOLT BERTA - ISTVAN VAJDA

ABsTRACT. The user wishes to communicate with a remote partner over an
insecure network. Since the user is a human being, a terminal is needed to gain
access to the network. In this paper the problem of sending authentic messages
from insecure or untrusted terminals is analyzed. In this case attackers are able
to gain total control over the terminal, so the user must consider the terminal
a potential attacker.

The authors consider an important merit of the paper the construction of
a formal model that is able to handle interesting problems in case of untrusted
terminals. According to this model, the user is able to encrypt or authenticate
messages with very small degree of security only, so these messages can be
broken by the terminal with significant probability. Since the cryptographic
abilities of the user are more than limited, and no solution is known for the
problem, our model seems to be realistic.

We show, that if the user lacks the ability to encrypt (and decrypt) messages
in one step, i.e. without interaction with the remote partner, then the latter is
unable to help the user in establishing a secret channel. We also show the same
conclusion for authenticity: If the user is unable to calculate an authenticator
that cannot be broken by the terminal, then the remote partner is unable to
help the user in constructing an authenticated channel.

Mathematics Subject Classification: 03D15, 94A60

Keywords: untrusted terminal, human-computer cryptography,
complexity theory

1. INTRODUCTION

We consider electronic commerce applications, where a user — a sole human being
— wishes to make business with a remote partner. In such cases, the user transmits
sensitive information via an insecure network. Such information needs protection,
that is provided by cryptographic algorithms running on the user’s terminal and
the remote partner’s computer. In such a situation it is essential, that both of these
computers are trusted.

Thus, in most cryptographic protocols it is assumed, that a trusted terminal is
present. However, in realistic scenarios, very few terminals can be called ’trusted’.
Either because the party operating the terminal is not trusted by the user, or the
user cannot be convinced that the terminal does not have hidden features. It is also
very hard to check if the hardware or software of the machine has been tampered
with. Most users lack the skills to protect their own machine from troyans, viruses
or intruders from the net, and they have little or no information on the software
installed.

The user might have a smart card for assistance. Smart cards are often considered
a magic bullet against untrusted terminals. However, since they do not have a
direct user interface (keyboard or display) of their own, they need a terminal to

1

2 ISTVAN ZSOLT BERTA — ISTVAN VAJDA

communicate with the user. If this terminal is malicious, it can easily alter any
message to and from the card.

The problem of untrusted terminals is a mass problem, that appeares in almost
every e-commerce application. The authors would like to contribute to the research
of this important topic.

2. RELATED WORK

2.1. Terminal identification. Terminal identification is perhaps the most basic
problem. It aims to authenticate terminals and to distinguish between terminals of
various trust levels. In the most simple case, terminals are categorized into two main
groups: 'good’ terminals and ’evil’ terminals. In the former group we wish to trust
completely, while we wish to avoid the latter group. This approach is based on the
assumption, that while ’good’ terminals are able to identify themselves correctly,
’evil’ terminals are unable to do so. It is important to note, that ’good’ terminals
have to be tamper resistant too, otherwise tampered legal terminals could serve the
attacker, but would still be able to identify themselves.

Asokan et al. [3] and Rank and Effing [16] show a simple protocol, that — using
smart cards and one-time passwords — enables the identification of fake terminals. In
their solution, a secret password is shared between the user and the smart card. The
card presents the password to the terminal only if the terminal has identified itself
correctly by a challenge and response method. The user accepts those terminals
as 'good’ ones, that are able to present the password. This terminal identification
protocol is simple, but requires the user to be very disciplined (to check and change
the password at every single login) and to think very critically and suspiciously
about the terminal.

Unfortunately, this protocol still does not provide protection terminal-in-the-
middle attacks, so Asokan et al. propose that the terminal and the smart card
should run distance bounding protocols [7] to limit the possibilities of terminal-in-
the-middle attackers.

It is also very hard to identify tampered terminals. Thompson [21] demonstrates
that it is impossible to verify if terminal has been tampered with, without a separate
trusted machine that has direct access to the terminal’s ’hard drive’. He argues,
that if the compiler program on the terminal is manipulated, than all software on
the terminal (including the compiler itself) that is compiled with it can be malicious,
even if the source code is verified to be correct. This leads to the fact, that the
terminal’s integrity can neither be verified nor can be corrected using a smart card
and the software on the terminal.

Anderson [2] studied several cases of electronic frauds and attacks on security
systems, finding, that most frauds were not performed by using cryptoanalysis,
but by exploiting blunders, implementation errors, management failures or insider
knowledge. Many of the attacks discussed by Anderson were delivered by fake
malicious terminals.

Another approach is to keep every terminal trusted by making it hard for at-
tackers to tamper with them. Although this seems like fighting windmills, the
industry supports this approach the most, since this could be the most com-
fortable for users. Several projects follow this direction, including TCPA, which
would restrict a terminal to executing only digitally signed applications. ([22],
http://www.trustedpc.org, http://www.finread.com)

LIMITATIONS OF HUMANS WHEN USING MALICIOUS TERMINALS 3

2.2. Using untrusted terminals.

2.2.1. Using smart card on untrusted terminals. In frequent cases we have no other
option than using the terminal, while we know we cannot trust it. It is a wide-
spread approach to use smart cards or other trusted personal devices to protect
keys, and other sensitive data. However, due to their lack of user interface, smart
cards can only communicate with the cardholder through the terminal. (Figure 1)

The problem of man-in-the-middle attacks of untrusted terminals was addressed
by Abadi et al. [1] first, by analyzing the dangers of delegation of rights to a
terminal. They show that the problem can be solved with a smart card that has
peripherals to communicate directly with the user, and they show secure protocols
for such a device. Later on, they strip as much of these peripherals from the card,
as possible. They prove, that with the resulting card, which has no clock and
no keyboard but only a display, the same degree of security can be implemented
without placing too much load on the user. However, after more than 10 years of
development, the smart card with a display is still not a feasible assumption.

Similarly, Gobioff et al. [9] analyze various hypothetic smart cards having secure
input or output channels, and identify various classes of equivalence between them.
For example, they show, that a smart card with a private input channel (keyboard)
is equivalent with one with a private output channel (display). Their contribution
adds rather little to that of Abadi et al. Balfanz and Felten [4] also show, that
a trusted PDA with a trusted user interface could be more secure for generating
digital signatures. Their work is an implementation, that supports the principles of
Abadi et al. by evidence, but does not extend them by any means. However, they
also raise the question, if a PDA could be considered a trusted device. Moreover,
a PDA is very expensive compared to a smart card, so organizations (like banks)
are unlikely to equip there users with PDAs.

Stabell-Kulo et al. [20] proposed a protocol for sending authentic messages
from untrusted terminals. In their solution, the user encrypts the message using
a one-time-pad together with a monoalphabetic substitution table, and thus gains
authenticity for structured messages. They use a smart card to sign the message
and a trusted third party to sign it again and thus certify the card’s signature.
Unfortunately, in case of long messages the user is not able to memorize one-time
keys, so the solution of Stabell-Kulo et al. works with short ones only. However,
they state, that obtaining secrecy in case of untrusted terminals is impossible, which
contradicts their own assumption, that the user can memorize a one-time key as
long as the message.

Schneier and Schostack [18] analyze smart card systems as a whole, and call
smart cards ’handicapped computers’ due to their lack of user interface. They
state, that these devices enable several new attacks, that would be impossible with
traditional computers.

According to Rivest [17] there is a fundamental conflict between having a secure
device and having a ’reasonable customizable user interface’ that supports down-
loading of applications. Rivest argues, that the more peripherials a device has,
the more features it offers to the user, the more components can be customized or
replaced by third party products, the less secure the device is. While we prefer to
work with such convenient and user-friendly devices, all of the above improvements
grant new possibilities to the attacker too. It is natural, that customers tend to
create their documents on devices where they can work conveniently. However, the

4 ISTVAN ZSOLT BERTA — ISTVAN VAJDA

1
1 .
1 lnsecure ,
1
1+ channel :
1
1
1 1
: 1
' . ! Remote
User T Terminal L
' : Partner
' 1
! 1
1

Smart Card

FIGURE 1. A widespread model for systems with insecure terminals

user-friendly insecure device makes it impossible to guarantee the integrity of the
documents. If such a document is signed by a smart card, the signature cannot
prove, that the document really originates from the user. Rivest suggests, that a
digital signature should not be considered non-repudiable proof, but simply plausi-
ble evidence. Thus users should be given well-defined possibilities for repudiating
such signatures.

Another approach takes advantage of the fact, that the smart card is physically
close to the user. Berta and Vajda [6] propose a solution, where the user can send
authentic biometric (audio or video) messages from untrusted terminals. These
biometric messages encapsulate the user’s identity with the content of the message.
In order to protect their integrity, they are strengthened by simple algorithmic
authenticators, and are signed by the smart card along with a secure timestamp.
The authenticity of the message can be determined by verifying the signature of the
card, and comparing the timestamps supplied by the user and the smart card. This
method works with today’s smart cards, but relies on the fuzziness of biometry and
is not a purely cryptographic solution.

The solution of Clarke et al. [8] uses a super-smart card, a device equipped with
a digital camera, which is connected to the network while continuously monitoring
the screen of the terminal. This camera-based device analyzes the contents of the
screen, and compares it with the data received on an authentic channel. The device
warns the user via a led in case of any difference. Although this device is currently
technically infeasible, this solution would enable authentic communication without
requiring the user to perform any calculations. However, such a complex device
is hard to believe to be tamper resistant, on the other hand this futuristic device
would still not solve the problem of customized user interfaces raised by Rivest.
[17

2.2.2. Human-computer cryptography. Since smart cards did not solve the problem
of untrusted terminals, another idea emerged. Pencil-and-paper cryptography (or
human-computer cryptography) tries to give the user a method to protect the se-
crecy or authenticity of the message alone, without the help of a smart card. Among
historical methods (like the book cipher) the one-time-pad can be considered quick
and easy enough for the limited computational power of the human. However, in

LIMITATIONS OF HUMANS WHEN USING MALICIOUS TERMINALS 5

case of long messages the user would need secure storage space for long one-time
keys.

Methods proposed by Naor and Pinkas [14] rely on visual cryptography, which
uses transparencies placed on the computer’s screen. [15] Their algorithm relies on
a one-time-pad, where the xor operation is accelerated by the fast visual processing
of the human being. The key is composed by the transparent and non-transparent
sectors on the transparencies. The required key-size is very large (especially for
long messages), thus visual cryptographic keys must be stored. However, methods
of Naor and Pinkas enable a remote partner to send authentic messages to a user
at an untrusted terminal, or to identify the user in a secure way, while the basic
visual cryptography enables private communication towards the user.

Matsumoto [13] developed a human identification scheme, that enables challenge
and response identification of humans at untrusted terminals. His solution relies
on an assumption, that humans can easily understand and ’decode’ certain images,
while computers have trouble with it. The remote partner transmits a one-time
key via such ’questions’, and the user combines the answer with this one-time key.
He suggests, that such a scheme could be used for encryption too. However, such a
scheme would require the remote computer to select ’questions’ from a significantly
large space, which can be problematic. Moreover, the scheme can be undermined
if the attacker can use human interaction too.

The solitaire algorithm of Schneier [19] provides strong encryption, and uses a
deck of card for keying. The key is the initial order of the deck. As the deck is
shuffled, it is used as a pseudo-random number generator. Solitaire is a stream-
cipher that modularly adds the output of this PRNG to the plaintext. Although
it is optimized for use by humans, in case of long messages, encryption requires a
significant amount of time, so this algorithm is more suitable for secret agents than
every-day people.

3. MODEL

Let U denote the user who wishes to communicate with the remoter partner R
using the untrusted terminal 7. While U is a human being, R and T are computers.
User U would like to send the message m to R, and tries to 'protect’ (encrypt or
authenticate) it by combining it with the secret key k, which is a shared secret
between U and R. Both m and k are strings of characters from a binary alphabet
I = {0,1}. Parties U, R and T are able to execute various efficient algorithms
(randomized algorithms of polynomial complexity in their input parameter [11])
that perform an I* — I'* mapping.

The key k is n-bit-long, where n is a security parameter. We assume the message
length length(k) < length(m) < p(n), where p(n) is a polynom. For input x
algorithm h produces h(z) as output. Henceforth, notation x|y stands for the
concatenation of strings « and y. Furthermore, notation [a] stands for the value of
the expression a.

Using the above notations, we give a definition for the notion of computational
easy and hard. Naturally, both easy and hard are relative to the amount of resources
a certain party (U, R or the attacker) has. According to literature (e.g. [10]), we
express such resource constraints as functions of the security parameter n.

6 ISTVAN ZSOLT BERTA — ISTVAN VAJDA

Definition 1. Let a and b be two efficient algorithms. We say that it is t(n)-hard
to compute b(x) from a(x), if for all efficient algorithms h with t(n) resources and
input a(x), for all polynomials p(n), and for large enough n:

1
Pr (b(z) = hypy(a(z))) < —=
- (() t()(())) p(n)
where x is uniformly chosen from the set of binary strings of length which is poly-
nomial in n.

Function t(n) is a polynomial in n and gives resource constraint. Resource
constraints will be imposed on computers and humans, therefore in the role of t(n)
two specific will be used, namely tcomputer(n) and tpyman(n). Subsequently, we
define tcomputer (n) by equation (1), and tpuman(n) by equation (2).

Based on the above definition, we introduce predicate hard(a(x), b(x),t(n)) that
takes value true if computing b(x) based on a(x) is t(n)-hard. Otherwise, the
predicate takes value false.

Just like algorithms a(xz) and b(x), function ¢(n) is a parameter of predicate
hard.

The above definition follows the usual formalism of the asymptotic approach of
algorithm complexity theory. Note, that the above problem can only be addressed
probabilistically, because the attacker can always guess b(z) with a non-zero prob-
ability. A problem is considered hard, if it is hard to solve it on the average, so the
probability of the attacker’s success is negligible. Negligible means being bounded
above by all functions of the form ﬁ. [10] Thus, the higher the security param-
eter is, the harder the problem is, so the lower chance of success is allowed for the
attacker.

Definition 2. Let a and b be two efficient algorithms. We say, it is t(n)-easy to
compute b(x) from a(x), if there exists an efficient algorithm h with t(n) resources
and input a(z) such that for any' x with length polynomial in n

b(x) = hymn)(a(x))

Based on the above definition, we introduce predicate easy(a(zx),b(z),t(n)) that
takes value true if computing b(z) based on a(z) is t(n)-easy. Otherwise, the
predicate takes value false. The role and the definition of parameter ¢(n) is exactly
the same as in case of Definition 1.

Using t(n)-easy and t(n)-hard, we define ciphers and message authentication
codes (MACQ).

Definition 3. Algorithm f is a tattacker(n)-strong cipher, if it is tattacker(n)-hard
to obtain the whole input M of algorithm [from f(k|M) without knowing key k. If
the key is known, tenerypt(n) resources are required to perform the encryption and
tdecrypt(n) Tesources are required for decryption. Formally:

cipher (f; tenc’r‘ypt (TL), tdecrypt (TL); tattacker (TL)) =
< hard(f(k|M), M7 tattacker (TL))/\
A easy(k|M, f(klM)’ tencrypt (TL)) A easy(f(klM”ka M; tdecrypt(n))

IThis definition of easy can be generalized if we allow an e error rate for the user. However,
such generalization does not yield any more possibilities for the user.

LIMITATIONS OF HUMANS WHEN USING MALICIOUS TERMINALS 7

In the above definition we use predicate hard the following way: variable x
corresponds to block (k| M), algorithm a corresponds to algorithm f, and algorithm
b for input (k|M) outputs M.

Definition 3 of an encryption resembles the well-known security definition of
"plaintext recovery" for symmetric key encryption transformation. [5] The main
difference is, that we do not allow access to an encryption oracle. The reason is
that we assume one-time keying (as described below).

Definition 4. Algorithm f can compute taitacker (N)-Strong message authentication
code, if — based on one pair of observed input M and output MAC — it is tattacker (N)-
hard to present a different input M’ and corresponding MAC without knowing the
key. If the key is known, it is tcqic(n)-easy to compute the MAC, and tcpecr(n)-easy
to check it. Formally:

mac(fa calc()a tcheck()a tattacker (n)) <

- haTd(M|f(k|M M/|f(k|M attacker(n)) A
A easy(k|M, f(k|M),tearc(n)) A easy(k|M'|z, [f(KIM') == 2], tenecr(n)),
where M #+ M'.

We also have to define the amount of resources U, R and T have. Since R and T
are computers, they have tcomputer (1) resources. Both of them are able to execute
algorithms of polynomial complexity in n. Formally, tcomputer(n) = O(n°), i.e.:

(1) Ede,dVn{t(n) < *xn®}
where the values of ¢ and ¢’ depend on the number and architecture of the involved
computers.

Definition of the tpuman(n) resources of the human being is more difficult.
Heuristically, thuman(n) < tcomputer(n). Our implicit definition of thuman(n) is
given by the following natural way:

JEA
JEA

A

==3f {cipher (f, thuman(n), teomputer(1), teomputer(n)

—3f {cipher (f, tcomputer (), thuman(n), teomputer (1)

—3f {mac (f, thuman(n), teomputer(n); teomputer(n))}

(2) —3f {mac (f, tcomputer (1), thuman(n); teomputer(n))}

This way, we defined thyman(n) by claiming, that no tcomputer (n)-strong cipher
and no feomputer (n)-strong mac exists, that can be executed with thuman(n) re-
sources at the coding or decoding side. Thus, U is able to perform weak encryption
or weak authentication only, that can be successfully attacked by the terminal with
high probability.

Assume, we are in a world where the above limitations hold. We also suppose,
that the Kerckhoff principle is valid, so the attacker T, knows every algorithm U
and R uses, but does not know the secret key k. In order to make our proposition
more general, we make the environment as advantageous for the user as possible.
Thus, we assume, that:

e One-time keying is used, so key k is replaced after each message m is sent.
(Note, that length(k) < length(m), so a one-time-pad cannot be used.)

e In case of secrecy, the attacker is able to eavesdrop only, and cannot modify
the messages on the channel.

e In case of message authenticity, the attacker is active.

8 ISTVAN ZSOLT BERTA — ISTVAN VAJDA

After these preparations we are able to examine the following problem: Is it
possible for U and R to solve the problems of encryption and message authentication
by interaction, i.e. not in one step, but in several interactive protocolsteps?

4. SECRECY

In this section we examine if U with t5umaen resources can transmit a secret
message to R using a finite two-party protocol.

Proposition 1. If user U cannot encrypt message m with thumaen(n) resources
with a security that cannot be broken with tcomputer(n) resources with significant
probability, then no N-step-long protocol P exists between U and R that has the
following properties:

(S1) P enables R to decrypt m with teomputer(n) resources,
(S2) P prevents the attacker (who also has tcomputer(n) resources but does not
know k) from decrypting m.

Proof. We consider the following general protocol for interactive encryption:
Initially: o9 =0

1. U — R: fl(/{Z|M1), where M1 = m|00
o1 = fi(k|M)
2. R — U: go(k|Ms), where My = o1

o2 = o1|g2(k|Mz)

(2L — 1). U — R: f2L—1(k/’|M2L—1), where MQL_l = m|02L_2
oor—1 = 02r,—2|for—1(k|Mar—1)
(2L) R — U: ggL(k|M2L), where MQL = O-QLfl)

021, = 0211|921 (k| Mar)

N. U — R: fN(k|MN),where MN :m|0'N_1
on =on-1|fn(k|Mn)

where in each step j, o; denotes all the data that was interchanged by U and R via
the public channel by U and R, thus o; denotes the database of the attacker too.
We consider N-step-long protocols, so R is able to acquire m after step N only.

The proposition (S1 and S2) can be formalized as follows:
(3) (2) — —3on {hard (on, M, tcomputer () A easy (klon, m, teomputer (1))}

In contrary, assume, that:
(4) 3O-N {hard (UN; m, tcomputer (TL)) A easy (k|UNa m, tcomputer (n))}

If algorithm f; can be executed by U, then user U has enough resources to run it:
(5) = Vi {easy(k|Mj, f;(E[M;), thuman(n))}

According to the assumption about the abilities of the human (2), no algorithm

that U can run, can be a cipher. So, according to (5), none of the algorithms f;
can be a cipher. This has the following implication:

=V {easy(k|M;, f;(k|M;), thuman(n)) —
(6) — —hard(f;(k|M;), Mj, teomputer) V measy(f; (k[M;) [k, Mj, teomputer (1)) }
Note, that M; = m|o;_1 if j is odd.

LIMITATIONS OF HUMANS WHEN USING MALICIOUS TERMINALS 9

User U cannot compute a cipher, but can choose between two lesser alternatives.
One of them is to choose an algorithm, where —easy(f;(k|M;)|k, M;, tcomputer(1))-
This means, remote partner R is unable to obtain m. The other alternative is to
choose an algorithm, where —hard(f;(k|M;), M;, tcomputer). Such an algorithm is a
weak encryption, where the attacker might be able to obtain m. This latter would
violate the S2 property, so user U should choose an f; where:

(7) = V[{—easy(f; (kI M;)[k, My, teomputer(n)) }

According to (4), R should be able to obtain m after step N using an algorithm
m = gnt1(k|lony) from k and oy, while the attacker can be successful with a
negligible probability only.
(8) E hard (on, M, teomputer (1)) A easy (klon, m, teomputer (1))
Let’s substitute oy with on_1|fn(k|m|on—1) into (8).

Ehard (on_1|fn(k|m|on=1), M, tcomputer (1)) A
Aeasy (kloy-1]fn(klmlon-1), m, teomputer (1))

The above formula can be simplified if we suppose, that fy includes oy in its

output. This does not spoil the security of the system, since oy is already public.
Then we obtain:

Ehard (fv(klmlon—1), m|oN_1, tcomputer(1)) A
Aeasy (k| fn (klm|on—1),m|on—1, tcomputer(n))
Finally, we substitute m|oy_1 with My:
(9) = hard (fn(k|My), MN, teomputer (n)) Aeasy (k| fn (k| My), My, teomputer (1))

Note, that (9) contradicts (7) for fn. We have come to a contradiction, so the
above protocol does not exist. O

5. MESSAGE AUTHENTICITY

In this section the question of message authenticity shall be considered. Assum-
ing that U is unable to provide strong message authenticity in one step, we prove,
that U and R cannot solve the problem with several interactive protocol-steps ei-
ther.

Since single steps cannot be authenticated in a ’secure way’, so neither U, nor R
will be able to decide if the messages have been tampered with before the protocol
is finished. We shall use the following notation:

A = B: « means, party A sends the message o towards party B via an insecure
channel, where the attacker can modify a on the channel to o/, so B
receives o'.

Proposition 2. If U is unable to perform strong authentication with thyman(n)
resources, then no N-step-long protocol P exists between U and R, that has the
following three properties:

(A1) R learns message m when protocol P terminates (after step N).

(A2) R is able to verify that oy is authentic.

(A3) Without the key k, the attacker is unable to produce a valid pair of dat-
ablocks oy, and m’ (m # m') with significant probability.

Proof. We consider the following general protocol for interactive authentication:

10 ISTVAN ZSOLT BERTA — ISTVAN VAJDA

Initially: o9 =0, wo =0

1. U= R: fi(k|m)

[00|f1(k|m), w1 = Wo
2. R =U: gy(kloy)

o9 = 01, wp = wi|ga(kloy)
3. U = R: f3(k|m|w))

03 = 02 f3(k|m|ws), ws = wa

(2K). R=U: gax(k|lobp_1)

ok = Oak—1, war = war 1|92k (K|obr_1)
(2K+ 1). U = R: f2K+1(kz|m|w§K)

O2K+1 = 02K|f2K+1(k|m|Ul2K); W2K+1 = W2K
N. U= R: fn(klm|wi_q)

on =on-1lfn(kmlwy_), wy =wn—1

R becomes more and more confident in the authenticity of m’ with every received
datablock o, because the probability of a successful attack decreases continuously.
The protocol terminates at the Nth step, when this probability is considered small
enough, so that R can verify the authenticity of m’. R can check the authenticity
of m’ by recalculating the o, values. R accepts m’ as authentic if:

(10) F(klm'lwn) = fi(klm'|wo) | fs(klm/|w2) |...| fn (kI lwn—1) = oy

The attacker is successful in the above protocol, if there is a non-negligible proba-
bility of R accepting m’ as authentic, where m’ # m.
The proposition (A1l and A2 and A3) can be formalized as follows:
(2) = ~Jon{hard(m|lwy|on, M |wN|oy, teomputer (M)A
(11) easy(klm'|oy |lw, [F(k|m/|wy) == o], teomputer (1))}
where m # m’.
In contrary, assume, that the above protocol provides secure authentication, i.e:
Jon{hard(m|wn|on, m |wn |0, teomputer(n)) Am # m/A
(12) easy(k|m/|oy wn, [F(klm/|lwn) == o], teomputer(n)) }
where m # m’.
Algorithm F' has the following properties:
e U is able to run F'. According to (10), the execution of F' requires as much
resources as executing all of the algorithms f; sequentially. Formally:

(13) ': easy(k|m|wN, ON, thuman (TL))

e If U is able to run an algorithm, R is able to do it too, because thyman <
tcomputer- Thus, R is able to check F' by simply recalculating it. Formally:

easy(k|m/|wn, o, teomputer (1)) —

(14) — easy(klm'|wn oy, [F(k|lm'|wy) == o], teomputer (1))

LIMITATIONS OF HUMANS WHEN USING MALICIOUS TERMINALS 11

If we substitute m|wy with M and m/|wy with M’, and we also substitute oy
with F'(k|M), then from (13) and (14) we obtain:

Eeasy(k|M, F(k|M), thuman(n))A
(15) A easy(k|M'loy, [F(k|M') == o], teomputer (n))
Because of our assumptions about the user’s abilities (2), (15) implies:
—hard(M|F(k|M), M'|F(k|M'), teomputer (n)),

where M # M'.
If we revert the above substitutions, we obtain:

—hard(mlwn|on, m'|wn|F(k|m'|wn), teomputer (1)),

where m|wy # m/|wn, which is equivalent with m # m/.
The attacker can compute F'(k|m/|wn), and is able to use it as oy, while attack-
ing. Thus, we can substitute F'(k|m’/|wx) with o}y and obtain:

(16) _‘hard(m|WN |UN7 m/|WN|O—§V7 tcompute'r (n));

where m # m’.
Note, that (16) contradicts the indirect assumption (12). We have come to a
contradiction, so the above protocol does not provide secure authentication. (I

6. CONCLUSIONS

We have shown a formal model that we could use to handle interesting basic prob-
lems for insecure terminals. According to our propositions, if the user is unable to
perform strong cryptographic operations (like encryption or message authentica-
tion) in a single step, then a remote partner cannot help the user in establishing a
secure (encrypted or authenticated) channel. Thus, it has completely no sense to
develop protocols for the user to communicate with a remote partner via an inse-
cure terminal. The situation remains the same if we involve a smart card, because
the user has to communicate with the card through the same insecure channel.

This does not mean that there cannot be any (e.g. physical or procedural)
circumstances when the above problems can be solved. Although in this model
the user does not have any chance to send encrypted or authenticated messages
from a malicious terminal, other ’softer’ models might yield more possibilities. For
example, we can suppose, that the user has significant amount of secure memory.
This can be easily achieved if we allow passwords, secret keys and other sensitive
information to be written into a copybook. (In certain applications, against certain
attackers a copybook may provide adequate security.) Thus, the encryption of
messages shorter than the key can be performed using a one-time-pad.

We may also suppose, that the user can find two untrusted terminals, that are
probably not cooperating with each other. (For example, a borrowed mobile phone
and an insecure PC in an internet café.) It might be possible to develop a protocol
for this scenario, similarly to the one developed by Kucner and Kutylowski [12],
that uses two possibly malicious smart cards against each other to create a secure
one.

The way we modelled the user can be considered equivalent with modelling him
or her as a slow and weak computer, a handicapped machine. However, humans
have other special abilities too, and can perform certain tasks much faster than
computers can. They can recognize images quickly (visual cryptography described

12 ISTVAN ZSOLT BERTA — ISTVAN VAJDA

in section 2.2.2 is one successful branch for this approach), or they can follow
association chains that computers would never figure out. However, it is probably
very hard to formalize and quantify such abilities.

Furthermore, in our model, the user was an average person. However, certain
humans might have an exceptional amount of resources, enough to perform strong
cryptographic operations. Some master chessplayers are able to beat today’s best
computers in this well defined algorithmic game. Another example: a secret agent
might sacrifice a significant amount of time to send one single authentic message.

Untrusted terminals pose a severe problem for average people in commercial
applications. Probably, the future solution for this problem will be based on a
special hardware device. For instance, a super smart card will evolve in the future,
that has a direct interface towards the user, and makes it possible to view the
message before it is signed.

REFERENCES

[1] M. Abadi, M. Burrows, C. Kaufman, and B. Lampson. Authentication and Delegation with
Smart-cards. Theoretical Aspects of Computer Software: Proc. of the International Confer-
ence TACS’91, Springer, Berlin, Heidelberg, 1992.

[2] N. Anderson. Why Cryptosystems Fail. Willaim Stallings, Practical Cryptography for Data
Internetworks, IEEE Computer Security Press, 1996, 1996.

[3] N. Asokan, Hervé Debar, Michael Steiner, and Michael Waidner. Authenticating Public Ter-
minals. Computer Networks, 1999, 1999.

[4] Dirk Balfanz and Ed Felten. Hand-Held Computers Can Be Better Smart Cards. Proceedings
of USENIX Security 99 Washington, DC., 1999.

[5] Mihir Bellare and Phillip Rogoway. Introduction to modern cryptography.
http://www.cse.ucsd.edu/users/mihir/cse207/classnotes.html, 2002.

[6] I. Zs. Berta and I. Vajda. Documents from Malicious Terminals. SPIE Microtechnologies for
the New Millenium 2003, Bioengineered and Bioinspired Systems, Maspalomas, Spain, 2003.

[7] S. Brands and D. Chaum. Distance-bounding protocols. Advances in Cryptogoly - Euro-
crypt’93, Lecture Notes in Computer Science, vol 765, Springer, Berlin, May, 1993, pp. 344~
359, 1993.

[8] Dwaine Clarke, Blaise Gassend, Thomas Kotwal, Matt Burnside, Marten van Dijk, Srinivas
Devadas, and Ronald Rivest. The Untrusted Computer Problem and Camera-Based Authen-
tication, 2002.

[9] Howard Gobioff, Sean Smith, and J. D. Tygar. Smart Cards in Hostile Environments. In
Proceedings of the 2nd USENIX Workshop on Electronic Commerce, Nov 1996, 23-28, 1996.

[10] O. Goldreich. The Foundations of Modern Cryptography. In Proceedings of Crypto97,
Springer’s Lecture Notes in Computer Science, Vol. 1294, http://theory.lcs.mit.edu/
“oded/frag.html, 1997.

[11] O. Goldreich. Introduction to Complexity Theory. http://www.wisdom.weizmann.ac.il/
~“oded/cc02.html, 1997.

[12] Daniel Kucner and Miroslaw Kutylowski. How to Use Untrusty Cryptographic Devices.
TATRACRYPT’03, The 3rd Central European Conference on Cryptology, Bratislava, Slo-
vak Republic, 2003.

[13] T Matsumoto. Human-Computer cryptography: An attempt. In ACM Conference on Com-
puter and Communications Security, pp 68-75, 1996.

[14] Moni Naor and Benny Pinkas. Visual Authentication and Identification. Lecture Notes in
Computer Science, volume 1294, 1997.

[15] Moni Naor and Adi Shamir. Visual Cryptography. Lecture Notes in Computer Science, vol
950, pp 1-12, 1995, http://citeseer.nj.nec.com/naor95visual.html, 1995.

[16] W. Rankl and W. Effing. Smart Card Handbook. John Wiley & Sons, 2nd edition, ISBN:
0471988758, 1997.

[17] R Rivest. Issues in Cryptography. Computers, Freedom, Privacy 2001 Conference
http://theory.lcs.mit.edu/ rivest/Rivest-IssuesInCryptography.pdf, 2001.

18]

19]

[20]

[21]

[22]

LIMITATIONS OF HUMANS WHEN USING MALICIOUS TERMINALS 13

B. Schneier and A. Shostack. Breaking up is Hard to do: Modelling security threats
for smart cards. USENIX Workshop on Smart Card Technology, Chicago, Illinois, USA,
http://www.counterpane.com/smart-card-threats.html, 1999.

Bruce Schneier. The Solitaire Encryption Algorithm. http://www.counterpane.com/
solitajire.htm, 1999.

Tage Stabell-Kulo, Ronny Arild, and Per Harald Myrvang. Providing Authentication to Mes-
sages Signed with a Smart Card in Hostile Environments. Usenix Workshop on Smart Card
Technology, Chicago, Illinois, USA, May 10-11, 1999., 1999.

Ken Thompson. Reflections on Trusting Trust. Communication of the ACM, Vol 29. No. 8,
August, 1984 pp 761-763, 1984.

Bennet Yee and J. D. Tygar. Secure coprocessors in electronic commerce applications. First
USENIX Workshop on Electronic Commerce,, 1995.

Laboratory of Cryptography and Systems Security

Department of Telecommunications

Budapest University of Technology and Economics

E-mail: {istvan.berta, istvan.vajda}@crysys.hit.bme.hu

